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We report here the total synthesis ef)¢allocyathin B (1)*f
and erinacine A 2),2 the 1#-p-xyloside of @)-1, the first
cyathin diterpenédo be prepared. The cyathin antibiotics were
first isolated in 1970 by Ayer and Brodifrom Cyathus helenae
Brodie, a bird nest fungus growing in the Rocky Mountains of
Alberta. Allocyathin B (1) was later isolated by Ayé&rfrom
a related fungusCyathus earleLloyd. More recently, Kawag-
ishi isolated erinacine A2), a potent stimulator of nerve growth
factor synthesis, from the mycelia Biericum erinaceurd The
unusual 5-6—7 tricyclic ring system and extensive functionality
make cyathin synthesis a challenging probfem.

We envisioned that could be prepared from cycloheptanol
3, which should be readily available from aldehydidoy an
intramolecular carbonyl ene reactibh. We expected thas
could be prepared from dienaby the Koga protocdi,addition
of a Grignard reagent to thtert-leucinetert-butyl ester imine
of 5 followed by methylation, which we used successfully in
our synthesis of reiswigin A. Dienal 5 should be readily
available by palladium-catalyzed carbonylation of the dienyl
triflate 7 prepared from enong@ Since enoné can be prepared
in two steps, this route should provide very efficient access to
3, which contains the complete carbon skeleton and much of
the functionality of the cyathins.

Conversion of6 to dienyl triflate 78 followed by palladium-
catalyzed carbonylati@nof 7 in methanol gave dienoatg.
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Reduction of8 with DIBAL followed by MnO; oxidation of9
gave dienab'®in 69% overall yield fron6. Attempted addition

of isopentenylmagnesium bromide to tieet-leucinetert-butyl
ester imine of by the Koga protocélgave only traces of the
desired 1,4-addition product, possibly due to steric hindrance
from the isopropyl group. All attempts to introduce the
isopentenyl side chain by cuprate addition to dien@dfiled.
Fortunately, TMS-accelerated cuprate addition to diénby

the Nakamura Kuwajima proceduré gave 91% ofl0as a 4:6
mixture of isomers. The isomers were separated and reequili-
brated with EfN, establishing that cuprate addition had occurred
stereospecifically. The stereochemistry of the cuprate addition
could not be established by mechanistic considerations since
there was precedent for axial cuprate addition despite the axial
methyl group'? while in other cases an axial methyl group forces
equatorial cuprate attadk. Methylation of 10 using Ireland's
proceduré* with a large excess of Mel (50 equiv) and K&

(7 equiv) provided 75% of a 15:1 mixture ef-methylated
aldehydeslla and 11b. The stereochemistry of the major
product was not obvious since equatorial methylation of
cyclohexanecarboxaldehydes, which would diud, is usually
observed, while approach from the least hindered face of the
enolate of10 would result in axial methylation to givéla

The stereochemistry of the major product was eventually
established aslaby X-ray crystallographic structure determi-
nation of a derivative ofl1b.1®
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Treatment ofLl1awith Me,AICI at —45°C for 2 h gave 87%
of a single alcohol12'7 with the complete cyathin skeleton,
which was protected giving isopropyldimethylsilyl eth&.
Unfortunately, the stereochemistry of the-B ring fusion in
12 was cis, while it is trans in all of the cyathins except for
allocyathin B (1). During his structure determination work,
Ayer established that treatment of cyathig @4) with acetic
anhydride in pyridine afforded anhydrocyathing B15).1f
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Reduction oft5with LAH afforded a 2:1 mixture of diols with
the desireds-diol predominating; Mn®@ oxidation afforded
allocyathin B.X This suggested that the conjugated triene
moiety of allocyathin B could be prepared by equilibration of
keto esterl8.
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The exocyclic alkene ofl3 was easily elaborated to a
cycloheptenecarboxaldehyde. Unfortunately, all attempts to
introduce the third double bond failed. We therefore cleaved
the exocyclic double bond (Og®I04, 77%) to give the ketone,
which was elaborated to enonk6 in 72% vyield via the
o-phenylselenidé® Desilylation followed by DessMartin
oxidation!® gave the dione, which was treated with KHMDS
and then PhNTFO to give exclusively enol triflatel7. The
position of triflation follows from the UV spectrumifax 274
nm, € 3600) of 17 which is consistent with g-triflyloxy-
conjugated dienone rather than a cross-conjugated di¢hone.
Palladium-catalyzed carbonylation b7 in methandl gave keto
ester18, which isomerized quantitatively to keto ested on
treatment with BN in MeOH (100 °C, 12 h). We were
pleasantly surprised to find that reduction X8 with LAH at
—78 to 0°C gave exclusively the desirgétdiol, which was
oxidized with MnQ to give @)-allocyathin B (1) with 'H and
13C NMR and IR spectral data identical to those of natural
allocyathin B.22 Presumably the different stereoselectivity in
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the reduction of the ketones of keto aldehyldeand keto ester

19 results from the disparate reactivity of the other carbonyl
group. The ketone group @B is reduced first selectively from
the a-face, while the aldehyde df5 should be reduced more
rapidly so that the ketone group can then be reduced from either
face by intramolecular delivery of hydride from R@BAIH3~.
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Model studies with borneol and 2,3,4--acetylo-D-
xylopyranosyl bromid#& suggested that the Helferich metRad
was most suitable for glycosidation of the hindered secondary
alcohol of allocyathin B. Treatment of £)-1 with 2,3,4-tri-
O-acetylo-D-xylopyranosyl bromide, Hg(CN) and HgC} in
CHaCN for 3.5 min at 25C gave 34% (68% based on recovered
1) of an easily separable 1:1 mixture of erinacine A triacetate
(20) from (+)-1,26 with spectral data identical to those of natural
material?® and the diastereomel from (—)-1.26 Separate
hydrolyses with potassium carbonate in MeOH provided-
erinacine A R)2327 and diastereomet2, the 15-p-xyloside of
(—)-1, in >90% yield.

In conclusion, ¢)-allocyathin B (1) and erinacine A 2),
the 1$-p-xyloside of (+)-allocyathin B, the first cyathin
diterpenes to be prepared, have been synthesized using a
carbonyl ene reaction ofla to construct an appropriately
functionalized seven-membered ring and palladium-catalyzed
carbonylation of dienyl triflate§ and 17 as key steps. The
entire cyathin carbon skeleton is constructed in only 7 steps
and allocyathin Bis synthesized in only 17 steps %% overall
yield) from readily available enong’
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